Chiral N-heterocycles are a common motif in many active pharmaceutical ingredients; however, their synthesis often relies on the use of heavy metals. In recent years, several biocatalytic approaches have emerged to reach enantiopurity. Here, we describe the asymmetric synthesis of 2-substituted pyrrolidines and piperidines, starting from commercially available ω-chloroketones by using transaminases, which has not yet been comprehensively studied. Analytical yields of up to 90% and enantiomeric excesses of up to >99.5% for each enantiomer were achieved, which has not previously been shown for bulky substituents. This biocatalytic approach was applied to synthesize (R)-2-(p-chlorophenyl)pyrrolidine on a 300 mg scale, affording 84% isolated yield, with >99.5% ee.
CITATION STYLE
Heckmann, C. M., & Paul, C. E. (2023). Enantio-Complementary Synthesis of 2-Substituted Pyrrolidines and Piperidines via Transaminase-Triggered Cyclizations. JACS Au, 3(6), 1642–1649. https://doi.org/10.1021/jacsau.3c00103
Mendeley helps you to discover research relevant for your work.