A fully automatic, non-contact method for the assessment of the respiratory function is proposed using an RGB-D camera-based technology. The proposed algorithm relies on the depth channel of the camera to estimate the movements of the body’s trunk during breathing. It solves in fixed-time complexity, O(1), as the acquisition relies on the mean depth value of the target regions only using the color channels to automatically locate them. This simplicity allows the extraction of real-time values of the respiration, as well as the synchronous assessment on multiple body parts. Two different experiments have been performed: a first one conducted on 10 users in a single region and with a fixed breathing frequency, and a second one conducted on 20 users considering a simultaneous acquisition in two regions. The breath rate has then been computed and compared with a reference measurement. The results show a non-statistically significant bias of 0.11 breaths/min and 96% limits of agreement of −2.21/2.34 breaths/min regarding the breath-by-breath assessment. The overall real-time assessment shows a RMSE of 0.21 breaths/min. We have shown that this method is suitable for applications where respiration needs to be monitored in non-ambulatory and static environments.
CITATION STYLE
Valenzuela, A., Sibuet, N., Hornero, G., & Casas, O. (2021). Non-contact video-based assessment of the respiratory function using a rgb-d camera. Sensors, 21(16). https://doi.org/10.3390/s21165605
Mendeley helps you to discover research relevant for your work.