This research compares the facial expression recognition accuracy achieved using image features extracted (a) manually through handcrafted methods and (b) automatically through convolutional neural networks (CNNs) from different depths, with and without retraining. The Karolinska Directed Emotional Faces, Japanese Female Facial Expression, and Radboud Faces Database databases have been used, which differ in image number and characteristics. Local binary patterns and histogram of oriented gradients have been selected as handcrafted methods and the features extracted are examined in terms of image and cell size. Five CNNs have been used, including three from the residual architecture of increasing depth, Inception_v3, and EfficientNet-B0. The CNN-based features are extracted from the pre-trained networks from the 25%, 50%, 75%, and 100% of their depths and, after their retraining on the new databases. Each method is also evaluated in terms of calculation time. CNN-based feature extraction has proved to be more efficient since the classification results are superior and the computational time is shorter. The best performance is achieved when the features are extracted from shallower layers of pre-trained CNNs (50% or 75% of their depth), achieving high accuracy results with shorter computational time. CNN retraining is, in principle, beneficial in terms of classification accuracy, mainly for the larger databases by an average of 8%, also increasing the computational time by an average of 70%. Its contribution in terms of classification accuracy is minimal when applied in smaller databases. Finally, the effect of two types of noise on the models is examined, with ResNet50 appearing to be the most robust to noise.
CITATION STYLE
Tsalera, E., Papadakis, A., Samarakou, M., & Voyiatzis, I. (2022). Feature Extraction with Handcrafted Methods and Convolutional Neural Networks for Facial Emotion Recognition. Applied Sciences (Switzerland), 12(17). https://doi.org/10.3390/app12178455
Mendeley helps you to discover research relevant for your work.