The present study investigates the reduction in nitrogen dioxide (NO2) levels using satellite-based (Sentinel-5P TROPOMI) and ground-based (Central Pollution Control Board) observations of 2020. The lockdown duration, monthly, seasonal and annual changes in NO2 were assessed comparing the similar time period in 2019. The study also examines the role of atmospheric parameters like wind speed, air temperature, relative humidity, solar radiation and atmospheric pressure in altering the monthly and annual values of the pollutant. It was ascertained that there was a mean reduction of ~ 61% (~ 66.5%), ~ 58% (~ 51%) in daily mean NO2 pollution during lockdown phase 1 when compared with similar period of 2019 and pre-lockdown phase in 2020 from ground-based (satellite-based) measurements. April month with ~ 57% (~ 57%), summer season with ~ 48% (~ 32%) decline and an annual reduction of ~ 20% (~ 18%) in tropospheric NO2 values were observed (p < 0.001) compared to similar time periods of 2019. It was assessed that the meteorological parameters remained almost similar during various parts of the year in 2019 and 2020, indicating a negligent role in reducing the values of atmospheric pollution, particularly NO2 in the study area. It was concluded that the halt in anthropogenic activities and associated factors was mainly responsible for the reduced values in the Delhi conglomerate. Similar work can be proposed for other pollutants to holistically describe the pollution scenario as an aftermath of COVID-19-induced lockdown.
CITATION STYLE
Siddiqui, A., Chauhan, P., Halder, S., Devadas, V., & Kumar, P. (2022). Effect of COVID-19-induced lockdown on NO2 pollution using TROPOMI and ground-based CPCB observations in Delhi NCR, India. Environmental Monitoring and Assessment, 194(10). https://doi.org/10.1007/s10661-022-10362-8
Mendeley helps you to discover research relevant for your work.