In this work, a novel composite of bacterial cellulose (BC) and expanded vermiculite (EVMT) composite was used to adsorb dyes and antibiotics. The pure BC and BC/EVMT composite were characterized using SEM, FTIR, XRD, XPS and TGA. The BC/EVMT composite exhibited a microporous structure, providing abundant adsorption sites for target pollutants. The adsorption performance of the BC/EVMT composite was investigated for the removal of methylene blue (MB) and sulfanilamide (SA) from an aqueous solution. The adsorption capacity of BC/ENVMT for MB increased with increasing pH, while the adsorption capacity for SA decreased with increasing pH. The equilibrium data were analyzed using the Langmuir and Freundlich isotherms. As a result, the adsorption of MB and SA by the BC/EVMT composite was found to follow the Langmuir isotherm well, indicating a monolayer adsorption process on a homogeneous surface. The maximum adsorption capacity of the BC/EVMT composite was found to be 92.16 mg/g for MB and 71.53 mg/g for SA, respectively. The adsorption kinetics of both MB and SA on the BC/EVMT composite showed significant characteristics of a pseudo-second-order model. Considering the low cost and high efficiency of BC/EVMT, it is expected to be a promising adsorbent for the removal of dyes and antibiotics from wastewater. Thus, it can serve as a valuable tool in sewage treatment to improve water quality and reduce environmental pollution.
CITATION STYLE
Bai, X., Liu, Z., Liu, P., Zhang, Y., Hu, L., & Su, T. (2023). An Eco-Friendly Adsorbent Based on Bacterial Cellulose and Vermiculite Composite for Efficient Removal of Methylene Blue and Sulfanilamide. Polymers, 15(10). https://doi.org/10.3390/polym15102342
Mendeley helps you to discover research relevant for your work.