Five glycyrrhetinic acid (Ib) derivatives have been synthesized to try to improve the antioxidant activity. Their in vitro antioxidant activities were studied using a cytochrome P450/NADPH reductase system from rat liver microsomes. The generation of microsomal free radicals was followed by oxidation of the DCFH-DA probe, while evaluating the capacity to inhibit reactive oxygen species (ROS) formation. Two hydroxylated derivatives, 18β-olean-12-ene- 3β,11α,30-triol (II) and 18β-olean-12-ene-3β,11β,30- triol (IV), exhibited strong antioxidant activities. At a concentration of 1.0 mg/ml, these derivatives inhibited ROS formation by 50% and 51%, respectively. Moreover, two homo- and heterocyclic diene derivatives, 18β-olean-11,13(18) -diene-3β,30-diol (III) and 18β-olean-9(11),12-diene-3β,30-diol (V), were also effective in ROS-scavenging activity (inhibition of 41% and 44% of ROS activity, respectively). In the same conditions, the lead compound (Ib) and the reference vitamin E inhibited ROS activity by 31% and 32%, respectively. Our results suggest that the chemical reduction of the 11-keto and 30-carboxyl groups into hydroxyl function (example, II, IV) can increase the antioxidant activity of Ib significantly. In view of these results, our study represents a further approach to the development of potential therapeutic agents from Ib derivatives for use in pathologic events in which, free radical damage could be involved. © 2004 Pharmaceutical Society of Japan.
CITATION STYLE
Ablise, M., Leininger-Muller, B., Wong, C. D., Siest, G., Loppinet, V., & Visvikis, S. (2004). Synthesis and in vitro antioxidant activity of glycyrrhetinic acid derivatives tested with the cytochrome P450/NADPH system. Chemical and Pharmaceutical Bulletin, 52(12), 1436–1439. https://doi.org/10.1248/cpb.52.1436
Mendeley helps you to discover research relevant for your work.