Protein kinase B (Akt) kinases are critical signal transducers mediating insulin action. Genetic studies revealed that Akt1 and Akt2 signalling differentially contribute to sustain lipid and glucose homoeostasis; however Akt isoform-specific effectors remain elusive due to the lack of a suitable model system to mechanistically interrogate Akt isoform-specific signalling. To overcome those technical limitations we developed a novel model system that provides acute and specific control of signalling by Akt isoforms. We generated mutants of Akt1 and Akt2 resistant to the allosteric Akt inhibitor MK-2206. We then developed adipocyte cell lines, in which endogenous Akt1 or Akt2 has been replaced by their corresponding drug-resistant Akt mutant. Treatment of those cells with MK-2206 allowed for acute and specific control of either Akt1 or Akt2 function. Our data showed that Akt1 W80A and Akt2 W80A mutants are resistant to MK-2206, dynamically regulated by insulin and able to signal to Akt downstream effectors. Analyses of insulin action in this cellular system showed that Akt1 andAkt2 are both able tomediate insulin regulation of the transcription factor forkhead box O1 (FoxO1) and the glucose transporter 4 (GLUT4), revealing a redundant role for these Akt kinases in the control of glucose transport into fat cells. In contrast, Akt1 signalling is uniquely required for adipogenesis, by controlling the mitotic clonal expansion (MCE) of pre-adipocytes that precedes white adipose cell differentiation. Our data provide new insights into the role of Akt kinases in glucose transport and adipogenesis and support our model system as a valuable tool for the biochemical characterization of signalling by specific Akt isoforms.
CITATION STYLE
Kajno, E., McGraw, T. E., & Gonzalez, E. (2015). Development of a new model system to dissect isoform specific Akt signalling in adipocytes. Biochemical Journal, 468(3), 425–434. https://doi.org/10.1042/BJ20150191
Mendeley helps you to discover research relevant for your work.