Skip to main content

Multimodal Fusion for Objective Assessment of Cognitive Workload: A Review

2Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Considerable progress has been made in improving the estimation accuracy of cognitive workload using various sensor technologies. However, the overall performance of different algorithms and methods remain suboptimal in real-world applications. Some studies in the literature demonstrate that a single modality is sufficient to estimate cognitive workload. These studies are limited to controlled settings, a scenario that is significantly different from the real world where data gets corrupted, interrupted, and delayed. In such situations, the use of multiple modalities is needed. Multimodal fusion approaches have been successful in other domains, such as wireless-sensor networks, in addressing single-sensor weaknesses and improving information quality/accuracy. These approaches are inherently more reliable when a data source is lost. In the cognitive workload literature, sensors, such as electroencephalography (EEG), electrocardiography (ECG), and eye tracking, have shown success in estimating the aspects of cognitive workload. Multimodal approaches that combine data from several sensors together can be more robust for real-time measurement of cognitive workload. In this article, we review the published studies related to multimodal data fusion to estimate the cognitive workload and synthesize their main findings. We identify the opportunities for designing better multimodal fusion systems for cognitive workload modeling.

Cite

CITATION STYLE

APA

Debie, E., Fernandez Rojas, R., Fidock, J., Barlow, M., Kasmarik, K., Anavatti, S., … Abbass, H. A. (2021, March 1). Multimodal Fusion for Objective Assessment of Cognitive Workload: A Review. IEEE Transactions on Cybernetics. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/TCYB.2019.2939399

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free