Members of the transient receptor potential (TRP) family of ion channels are cellular sensors involved in numerous physiological and pathological processes. We identified the TRP subfamily M member 7 (TRPM7) channel-kinase as a previously uncharacterized regulator of B cell activation. We showed that TRPM7 played a critical role in the early events of B cell activation through both its ion channel and kinase functions. DT40 B cells deficient in TRPM7 or expressing a kinase-deficient mutant of TRPM7 showed defective gathering of antigen and prolonged B cell receptor (BCR) signaling. We showed that lipid metabolism was altered in TRPM7-deficient cells and in cells expressing a kinase-deficient mutant of TRPM7 and suggest that PLC-γ2 may be a target of the kinase activity of TRPM7. Primary B cells that expressed less TRPM7 or were treated with a pharmacological inhibitor of TRPM7 also displayed defective antigen gathering and increased BCR signaling. Finally, we demonstrated that blocking TRPM7 function compromised antigen internalization and presentation to T cells. These data suggest that TRPM7 controls an essential process required for B cell affinity maturation and the production of high-affinity antibodies.
CITATION STYLE
Krishnamoorthy, M., Wasim, L., Buhari, F. H. M., Zhao, T., Mahtani, T., Ho, J., … Treanor, B. (2018). The channel-kinase TRPM7 regulates antigen gathering and internalization in B cells. Science Signaling, 11(533). https://doi.org/10.1126/scisignal.aah6692
Mendeley helps you to discover research relevant for your work.