The application of magnesium significantly affects the components of the wheat yield and the dry matter partitioning in the grain-filling period (GFP). This hypothesis was tested in 2013, 2014, and 2015. A two-factorial experiment with three rates of magnesium (0, 25, 50 kg ha−1 ) and four stages of Mg foliar fertilization (without, BBCH 30, 49/50, two-stage) was carried out. Plant material collected at BBCH: 58, 79, 89 was divided into leaves, stems, ears, chaff, and grain. The wheat yield increased by 0.5 and 0.7 t ha−1 in response to the soil and foliar Mg application. The interaction of both systems gave + 0.9 t ha−1 . The Mg application affected the grain yield by increasing grain density (GD), wheat biomass at the onset of wheat flowering, durability of leaves in GFP, and share of remobilized dry matter (REQ) in the grain yield. The current photosynthesis accounted for 66% and the REQ for 34%. The soil-applied Mg increased the REQ share in the grain yield to over 50% in 2014 and 2015. The highest yield is possible, but provided a sufficiently high GD, and a balanced share of both assimilate sources in the grain yield during the maturation phase of wheat growth.
CITATION STYLE
Grzebisz, W., & Potarzycki, J. (2022). Effect of magnesium fertilization systems on grain yield formation by winter wheat (Triticum aestivum l.) during the grain-filling period. Agronomy, 12(1). https://doi.org/10.3390/agronomy12010012
Mendeley helps you to discover research relevant for your work.