Methionine Sulfoxide Reductase A Mediates Dietary Restriction-Induced Lifespan Extension in Caenorhabditis elegans

  • Jiuli Zhang J
N/ACitations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

Background: Methionine sulfoxide reductase A (MsrA) is a well-studied antioxidant enzyme that has been found to be important for protecting cells against oxidative damage and regulating lifespan in several species. However, the role of MsrA in dietary restriction has not been examined. The authors evaluated the function of MsrA in dietary restriction-induced lifespan extension in Caenorhabditis elegans.Methods: C. elegans loss-of-function msra mutant animals and wild type control animals were subjected to two widely used dietary restriction treatments, solid dietary restriction (sDR) and dietary restriction by liquid bacteria (BDR). The survival of the animals was evaluated and the data was statistically analyzed. Results: The loss-of-function mutation of msra significantly suppressed the lifespan extension conferred by solid dietary restriction. By contrast, msra was dispensable for lifespan extension resulted from dietary restriction by diluted bacteria in liquid.Conclusion: msra-1 is a major factor in the sDR-induced lifespan extension. This result, coupled with the previous finding that MsrA mediates the effect of insulin-like signaling on lifespan extension, indicates an essential role of MsrA in the aging process in C. elegans.

Cite

CITATION STYLE

APA

Jiuli Zhang, J. M. (2013). Methionine Sulfoxide Reductase A Mediates Dietary Restriction-Induced Lifespan Extension in Caenorhabditis elegans. Journal of Aging Science, 01(03). https://doi.org/10.4172/2329-8847.1000110

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free