In this work, a highly selective and sensitive method has been developed for the detection of trinitrophenol (TNP), which is a dangerous explosive. For this purpose, N and P co-doped carbon dots (NP-Cdots) have been used. Synthesis of N and P co-doped carbon dots has been carried out by a simple and quick method. X-ray photoelectron spectroscopy analysis was carried out to detect the doping of N and P. These carbon dots are insoluble in water (inNP-Cdots). These carbon dots were functionalized by treating them with conc. HNO3 so that they become water-soluble (wsNP-Cdots). These dots were characterized by different analytical techniques such as IR, UV-vis, and fluorescence spectroscopy. The as-prepared wsNP-Cdots have good fluorescence properties. The average diameter of wsNP-Cdots is found to be 5.7 nm with an interlayer spacing (d-spacing) of 0.16 nm. The as-prepared wsNP-Cdots are highly sensitive and selective toward TNP, as observed using a fluorescence quenching technique. The quenching constant for TNP is found to be very high (8.06 × 104 M-1), which indicates its high quenching ability. The limit of detection is found to be 23 μM.
CITATION STYLE
Babar, D. G., & Garje, S. S. (2020). Nitrogen and Phosphorus Co-Doped Carbon Dots for Selective Detection of Nitro Explosives. ACS Omega, 5(6), 2710–2717. https://doi.org/10.1021/acsomega.9b03234
Mendeley helps you to discover research relevant for your work.