Localization of Dielectric Anomalies with Multi-Monostatic S11 Using 2D MUSIC Algorithm with Spatial Smoothing

0Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

This article demonstrates that the complex value of S11 of an antenna, acquired in a multi-monostatic configuration, can be used for localization of a dielectric anomaly hidden inside a dielectric background medium when the antenna is placed close (~5 mm) to the geometry. It uses an Inverse Synthetic Aperture Radar (ISAR) imaging framework where data is acquired at multiple frequencies and look-angles. Initially, near-field scattering data are used for simulation to validate this methodology since the basic derivation of the Multiple Signal Classification (MUSIC) algorithm is based on the plain wave assumption. Later on, from an applications perspective, data acquisition is performed using an antipodal Vivaldi antenna that has eight constant-width slots on each arm. This antenna operates in a frequency range of 1 to 8.5 GHz and its S11 is fed to the 2D MUSIC algorithm with spatial smoothing whereas the antenna artifact and background effect are removed by subtracting the average S11 at each antenna location. Measurements reveal that this methodology gives accurate results with both homogeneous and inhomogeneous backgrounds because the size of data sub-arrays trades between the image noise and resolution, hence reducing the effect of inhomogeneity in the background. In addition to near-field ISAR imaging, this study can be used in the ongoing research on breast tumors and brain stroke detection, among others.

Cite

CITATION STYLE

APA

Bilal, A., & Cho, C. S. (2022). Localization of Dielectric Anomalies with Multi-Monostatic S11 Using 2D MUSIC Algorithm with Spatial Smoothing. Sensors, 22(14). https://doi.org/10.3390/s22145293

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free