Pre-mRNA cleavage and polyadenylation is an essential step for almost all mRNA in eukaryotes. The cis-elements around the poly(A) sites, however, are very diverse among different organisms. We characterized the poly(A) signals of seven different species, and compared them with that of four well-studied organisms. We found that ciliates do not show any dominant poly(A) signal; a triplet (UAA) and tetramers (UAAA and GUAA) are dominant in diatoms and red alga, respectively; and green alga Ostreococcus uses UGUAA as its poly(A) signal. Spikemoss and moss use conserved AAUAAA signals that are similar to other land plants. Our analysis suggests that the first two bases (NN in NNUAAA) are likely degenerated whereas UAAA appears to be the core motif. Combined with other published results, it is suggested that the highly conserved poly(A) signal AAUAAA may be derived from UAA with an intermediate, putative UAAA, following a pathway of UAA→UAAA→AAUAAA.
CITATION STYLE
Zhao, Z., Wu, X., Ji, G., Liang, C., & Li, Q. Q. (2019). Genome-wide comparative analyses of polyadenylation signals in eukaryotes suggest a possible origin of the AAUAAA signal. International Journal of Molecular Sciences, 20(4). https://doi.org/10.3390/ijms20040958
Mendeley helps you to discover research relevant for your work.