sck1, a high copy number suppressor of defects in the cAMP-dependent protein kinase pathway in fission yeast, encodes a protein homologous to the Saccharomyces cerevisiae SCH9 kinase

66Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Schizosaccharomyces pombe regulates intracellular cAMP levels, and thus cAMP-dependent protein kinase (PKA) activity, in response to changes in nutrient conditions. Mutations in any of eight git genes inhibit glucose repression of fbp1 transcription, alter the cell morphology, and causes a reduction in the growth rate. The eight git genes encode components of an adenylate cyclase activation pathway, adenylate cyclase itself, and the catalytic subunit of PKA. Three of these genes have been identified in other studies as regulators of meiosis. Here we show that the sck1 gene, cloned as a high copy number suppressor of a mutation in git3, is able to suppress the defects conferred by a mutation in any of these git genes. Sequence analysis suggests that sck1 encodes a protein most closely related to the Saccharomyces cerevisiae SCH9 protein kinase that had previously been identified as a high copy number suppressor of mutations in S. cerevisiae that reduce or eliminate PKA activity. Disruption of the sck1 gene causes a significant delay in exit from stationary phase when combined with a disruption of the pka1 (git6) gene encoding the catalytic subunit of PKA. However, the sck1 disruption by itself has little or no effect upon fbp1 transcription, meiosis, or exit from stationary phase, and does not enhance the constitutive fbp1 transcription observed in a pka1 mutant. Therefore, sck1 appears to function in a redundant fashion to pka1, but to varying degrees, in the pathways regulated by pka1.

Cite

CITATION STYLE

APA

Jin, M., Fujita, M., Culley, B. M., Apolinario, E., Yamamoto, M., Maundrell, K., & Hoffman, C. S. (1995). sck1, a high copy number suppressor of defects in the cAMP-dependent protein kinase pathway in fission yeast, encodes a protein homologous to the Saccharomyces cerevisiae SCH9 kinase. Genetics, 140(2), 457–467. https://doi.org/10.1093/genetics/140.2.457

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free