Challenges and opportunities of multimodal data in human learning: The computer science students' perspective

34Citations
Citations of this article
103Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Multimodal data have the potential to explore emerging learning practices that extend human cognitive capacities. A critical issue stretching in many multimodal learning analytics (MLA) systems and studies is the current focus aimed at supporting researchers to model learner behaviours, rather than directly supporting learners. Moreover, many MLA systems are designed and deployed without learners' involvement. We argue that in order to create MLA interfaces that directly support learning, we need to gain an expanded understanding of how multimodal data can support learners' authentic needs. We present a qualitative study in which 40 computer science students were tracked in an authentic learning activity using wearable and static sensors. Our findings outline learners' curated representations about multimodal data and the non-technical challenges in using these data in their learning practice. The paper discusses 10 dimensions that can serve as guidelines for researchers and designers to create effective and ethically aware student-facing MLA innovations.

Cite

CITATION STYLE

APA

Mangaroska, K., Martinez-Maldonado, R., Vesin, B., & Gašević, D. (2021). Challenges and opportunities of multimodal data in human learning: The computer science students’ perspective. Journal of Computer Assisted Learning, 37(4), 1030–1047. https://doi.org/10.1111/jcal.12542

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free