Predicting Boiler Emission By Using Artificial Neural Networks

  • Yusoff A
  • Aziz I
N/ACitations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

Minyak sawit dihasilkan di kilang kelapa sawit yang dilengkapi loji kuasa stim tersendiri dan loji terbabit menggunakan bahan buangan kelapa sawit (sabut dan tempurung) sebagai bahan api dandang. Walau bagaimanapun, hasil pembakaran menyebabkan pencemaran ke atmosfera yang serius. Pelepasan asap melalui serobong boleh dipantau dengan menyelaku proses masukan (dalam bahan api, turbin, dandang) dan keluaran pencemar. Dalam kertas kerja ini, Rangkaian Neural Buatan (ANN) digunakan untuk menyelaku asap dari dandang kilang kelapa sawit. Regresi Lelurus Pelbagai (MLR) juga digunakan untuk mencari pekali unsur yang menyumbang kepada pelepasan setiap pencemar dan membanding dan mengesahkan keputusan ANN. Kesimpulannya, ramalan yang dibuat oleh ANN lebih baik daripada MLR tetapi keduanya menunjukkan keputusan yang hampir sama dengan nilai sebenar yang diperolehi dari kilang. Kata kunci: Rangkaian neural buatan; emisi dandang biojisim; regrasi lelurus pelbagai; ramalan dan perbandingan Palm oil is produced in palm oil mills, where palm oil waste can be used (shell and fibre) as fuel for the boilers for generating steam power plants. Unfortunately, the combustion products of these materials cause severe atmospheric pollutions. The emission released through the chimney can be monitored by modeling its process of input (in fuel, turbine, boiler) and output of the pollutants. In this paper, Artificial Neural Networks (ANN) is used to model the emission from the palm oil mill boiler. Multiple Linear Regression (MLR) is also applied to find the coefficient of the contributing element to the pollution in order to make comparison and validate the ANN results. In conclusion, the prediction made by ANN is better than MLR but both agrees well with the actual values collected from the mill. Key words: Artificial neural network; biomass boiler emission; multiple linear regression; prediction and comparison

Cite

CITATION STYLE

APA

Yusoff, A. R., & Aziz, I. A. (2012). Predicting Boiler Emission By Using Artificial Neural Networks. Jurnal Teknologi. https://doi.org/10.11113/jt.v50.172

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free