Abstract
We consider the generalized van der Pol systems x˙=y,y˙=−x+(1−x2)f(y), where f∈R[y]. The classical van der Pol systems have f(y)=y. We first characterize when the origin of the generalized van der Pol systems is a center, and second we provide the global phase portraits in the Poincaré disc of the generalized van der Pol when f(y)=a1y+a2y2 for all a1,a2∈R.
Author supplied keywords
Cite
CITATION STYLE
APA
Llibre, J., & Valls, C. (2023). Global phase portraits of the generalized van der Pol systems. Bulletin Des Sciences Mathematiques, 182. https://doi.org/10.1016/j.bulsci.2022.103213
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.
Already have an account? Sign in
Sign up for free