Exosome-encapsulated miR-505 from ox-LDL-treated vascular endothelial cells aggravates atherosclerosis by inducing NET formation

46Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.

Abstract

Neutrophil extracellular traps (NETs) play an important role in the pathological process of atherosclerosis (AS). This study aims to evaluate whether exosomes from oxidized low-density lipoprotein (ox-LDL)-treated vascular endothelial cells (VECs) aggravate AS by inducing NET formation. Exosomes from the peripheral blood of healthy donors and AS patients (namely NC-EXO and AS-EXO, respectively) and exosomes from human umbilical vein endothelial cells (HUVECs) treated without or with ox-LDL (namely normal EXO and ox-LDL-EXO, respectively) were isolated, identified, and co-cultured with neutrophils from peripheral blood of healthy donors. NET formation was evaluated by immunofluorescence staining and determining the content of cell-free DNA and myeloperoxidase-DNA complex. Dual-luciferase reporter assay, chromatin immunoprecipitation assay, quantitative reverse transcription polymerase chain reaction, and western blot analysis were performed to explore the underlying mechanisms. We found that AS-EXO and ox-LDL-EXO induced NET release from neutrophils. Mechanistically, ox-LDL treatment in HUVECs might activate the NF-κB pathway, which transcriptionally activates miR-505, and then the exosome-encapsulated high miR-505 expression targeted and inhibited SIRT3 in neutrophils, thereby inducing reactive oxygen species (ROS) level increase and NET release by neutrophils. Further in vivo experiments showed that ox-LDL-EXO accelerated AS progression in AS mice. In summary, exosome-encapsulated miR-505 from ox-LDL-treated VECs aggravates AS by inducing NET formation.

Cite

CITATION STYLE

APA

Chen, L., Hu, L., Li, Q., Ma, J., & Li, H. (2019). Exosome-encapsulated miR-505 from ox-LDL-treated vascular endothelial cells aggravates atherosclerosis by inducing NET formation. Acta Biochimica et Biophysica Sinica, 51(12), 1233–1241. https://doi.org/10.1093/abbs/gmz123

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free