Modelling and Simulation of Dissolution/Reprecipitation Technique for Low-Density Polyethene Using Solvent/Non-Solvent System

4Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

The global production and consumption of plastics have continued to increase. Plastics degrade slowly, causing persistent environmental pollution Developed waste plastic recycling methods are discussed in this report, with a focus on the dissolution/reprecipitation technique to restore low-density polyethene (LDPE) wastes. Aspen HYSYS is used to simulate the recycling of waste LDPE. Turpentine/petroleum ether (TURP/PetE) is chosen as solvent/non-solvent with fractions proved efficient through laboratory experiments. PetE is selected to be the non-solvent used for the precipitation of pure LDPE. The feedstock is assumed to be LDPE products containing additives such as dye. The simulation model developed estimated a pure LDPE precipitate recovery with a composition of 99% LDPE with a flowrate of 1024 tonnes per year. In addition, Aspen HYSYS could approximate a rough cost estimate that includes utility cost, installation cost and other factors. Technical challenges were eliminated, and several assumptions were taken into consideration to be able to simulate the process.

Cite

CITATION STYLE

APA

Zein, S. H., Hussain, A. A., Yansaneh, O. Y., & Jalil, A. A. (2022). Modelling and Simulation of Dissolution/Reprecipitation Technique for Low-Density Polyethene Using Solvent/Non-Solvent System. Processes, 10(11). https://doi.org/10.3390/pr10112387

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free