Although dystonia represents a major source of motor disability in Huntington's disease (HD), its pathophysiology remains unknown. Because recent animal studies indicate that loss of parvalbuminergic (PARV+) striatal interneurons can cause dystonia, we investigated if loss of PARV+ striatal interneurons occurs during human HD progression, and thus might contribute to dystonia in HD. We used immunolabeling to detect PARV+ interneurons in fixed sections, and corrected for disease-related striatal atrophy by expressing PARV+ interneuron counts in ratio to interneurons co-containing somatostatin and neuropeptide Y (whose numbers are unaffected in HD). At all symptomatic HD grades, PARV+ interneurons were reduced to less than 26% of normal abundance in rostral caudate. In putamen rostral to the level of globus pallidus, loss of PARV+ interneurons was more gradual, not dropping off to less than 20% of control until grade 2. Loss of PARV+ interneurons was even more gradual in motor putamen at globus pallidus levels, with no loss at grade 1, and steady grade-wise decline thereafter. A large decrease in striatal PARV+ interneurons, thus, occurs in HD with advancing disease grade, with regional variation in the loss per grade. Given the findings of animal studies and the grade-wise loss of PARV+ striatal interneurons in motor striatum in parallel with the grade-wise appearance and worsening of dystonia, our results raise the possibility that loss of PARV+ striatal interneurons is a contributor to dystonia in HD. © 2013 The Authors.
CITATION STYLE
Reiner, A., Shelby, E., Wang, H., Demarch, Z., Deng, Y., Guley, N. H., … Faull, R. L. M. (2013). Striatal parvalbuminergic neurons are lost in Huntington’s disease: Implications for dystonia. Movement Disorders, 28(12), 1691–1699. https://doi.org/10.1002/mds.25624
Mendeley helps you to discover research relevant for your work.