Background: Efficient host exploitation by parasites is frequently likely to depend on cooperative behaviour. Under these conditions, mixed-strain infections are predicted to show lower virulence (host mortality) than are single-clone infections, due to competition favouring non-contributing social 'cheats' whose presence will reduce within-host growth. We tested this hypothesis using the cooperative production of iron-scavenging siderophores by the pathogenic bacterium Pseudomonas aeruginosa in an insect host. Results: We found that infection by siderophore-producing bacteria (cooperators) results in more rapid host death than does infection by non-producers (cheats), and that mixtures of both result in intermediate levels of virulence. Within-host bacterial growth rates exhibited the same pattern. Crucially, cheats were more successful in mixed infections compared with single-clone infections, while the opposite was true of cooperators. Conclusion: These data demonstrate that mixed clone infections can favour the evolution of social cheats, and thus decrease virulence when parasite growth is dependent on cooperative behaviours. © 2006 Harrison et al; licensee BioMed Central Ltd.
CITATION STYLE
Harrison, F., Browning, L. E., Vos, M., & Buckling, A. (2006). Cooperation and virulence in acute Pseudomonas aeruginosa infections. BMC Biology, 4. https://doi.org/10.1186/1741-7007-4-21
Mendeley helps you to discover research relevant for your work.