Developmental stage influences chromosome segregation patterns and arrangement in the extremely polyploid, giant bacterium Epulopiscium sp. type B

4Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Few studies have described chromosomal dynamics in bacterial cells with more than two complete chromosome copies or described changes with respect to development in polyploid cells. We examined the arrangement of chromosomal loci in the very large, highly polyploid, uncultivated intestinal symbiont Epulopiscium sp. type B using fluorescent in situ hybridization. We found that in new offspring, chromosome replication origins (oriCs) are arranged in a three-dimensional array throughout the cytoplasm. As development progresses, most oriCs become peripherally located. Siblings within a mother cell have similar numbers of oriCs. When chromosome orientation was assessed in situ by labeling two chromosomal regions, no specific pattern was detected. The Epulopiscium genome codes for many of the conserved positional guide proteins used for chromosome segregation in bacteria. Based on this study, we present a model that conserved chromosomal maintenance proteins, combined with entropic demixing, provide the forces necessary for distributing oriCs. Without the positional regulation afforded by radial confinement, chromosomes are more randomly oriented in Epulopiscium than in most small rod-shaped cells. Furthermore, we suggest that the random orientation of individual chromosomes in large polyploid cells would not hamper reproductive success as it would in smaller cells with more limited genomic resources.

Cite

CITATION STYLE

APA

Hutchison, E., Yager, N. A., Taw, M. N., Taylor, M., Arroyo, F., Sannino, D. R., & Angert, E. R. (2018). Developmental stage influences chromosome segregation patterns and arrangement in the extremely polyploid, giant bacterium Epulopiscium sp. type B. Molecular Microbiology, 107(1), 68–80. https://doi.org/10.1111/mmi.13860

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free