Neurogenin1 defines zebrafish cranial sensory ganglia precursors

179Citations
Citations of this article
128Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Cells delaminate from epithelial placodes to form sensory ganglia in the vertebrate head. We describe the formation of cranial neurogenic placodes in the zebrafish, Danio rerio, using bHLH transcription factors as molecular markers. A single neurogenin gene, neurogenin1 (ngn1), is required for the development of all zebrafish cranial ganglia, which contrasts with other described vertebrates. Expression of ngn1 delineates zebrafish ganglionic placodes, including trigeminal, lateral line, and epibranchial placodes. In addition, ngn1 is expressed in a subset of cells within the otic vesicle that will delaminate to form the octaval (statoacoustic) ganglion. The trigeminal placode is the first to differentiate, and forms just lateral and adjacent to the neural crest. Expression of ngn1 is transient and prefigures expression of a related bHLH transcription factor, neuroD. Interfering with ngn1 function using a specific antisense morpholino oligonucleotide blocks differentiation of all cranial ganglia but not associated glial cells. Lateral line sensory neuromasts develop independently of ngn1 function, suggesting that two derivatives of lateral line placodes, ganglia and migrating primordia, are under separate genetic control. © 2002 Elsevier Science (USA).

Cite

CITATION STYLE

APA

Andermann, P., Ungos, J., & Raible, D. W. (2002). Neurogenin1 defines zebrafish cranial sensory ganglia precursors. Developmental Biology, 251(1), 45–58. https://doi.org/10.1006/dbio.2002.0820

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free