Boswellic Acids, Pentacyclic Triterpenes, Attenuate Oxidative Stress, and Bladder Tissue Damage in Cyclophosphamide-Induced Cystitis

11Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Boswellic acids, derived from the Boswellia serrata plant, have been demonstrated to have anti-inflammatory properties in experimental animal models. The present study was aimed to evaluate the uro-protective effect of boswellic acids in rats with cyclophosphamide-induced cystitis. Interstitial cystitis was induced by cyclophosphamide (CYP). In order to analyze the reduction of the urothelial damage, the bladder weight, the nociception response, and the Evans blue dye extravasation from the bladder were evaluated. To investigate the involvement of lipid peroxidation and enzymatic antioxidants CAT, SOD, and GPX and MPO and NO were evaluated. IL-6 and TNF-α were measured by the ELISA immunoassay technique. The results showed that pretreatment with boswellic acids significantly reduced urothelial damage which was accompanied by a decrease in the activity of MDA, CPO, and NO levels and prevention of the depletion of CAT, SOD, and GPX. The levels of IL-6 and TNF-α were dramatically reduced by boswellic acids. Histopathological findings revealed a considerable reduction in cellular infiltration, edema, epithelial denudation, and bleeding. Our findings showed that boswellic acids, by their antioxidant and anti-inflammatory properties, negate the detrimental effects of cyclophosphamide on the bladder, suggesting boswellic acids as promising therapeutic alternatives for cystitis.

Cite

CITATION STYLE

APA

Fatima, M., Anjum, I., Abdullah, A., Abid, S. Z., & Malik, M. N. H. (2022). Boswellic Acids, Pentacyclic Triterpenes, Attenuate Oxidative Stress, and Bladder Tissue Damage in Cyclophosphamide-Induced Cystitis. ACS Omega, 7(16), 13697–13703. https://doi.org/10.1021/acsomega.1c07292

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free