Prostate apoptosis response-4 mediates TGF-β-induced epithelial-to-mesenchymal transition

27Citations
Citations of this article
46Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A growing body of evidence supports that the epithelial-to-mesenchymal transition (EMT), which occurs during cancer development and progression, has a crucial role in metastasis by enhancing the motility of tumor cells. Transforming growth factor-b (TGF-β) is known to induce EMT in a number of cancer cell types; however, the mechanism underlying this transition process is not fully understood. In this study we have demonstrated that TGF-β upregulates the expression of tumor suppressor protein Par-4 (prostate apoptosis response-4) concomitant with the induction of EMT. Mechanistic investigations revealed that exogenous treatment with each TGF-β isoform upregulates Par-4 mRNA and protein levels in parallel levels of phosphorylated Smad2 and IκB-α increase. Disruption of TGF-β signaling by using ALK5 inhibitor, neutralizing TGF-β antibody or phosphoinositide 3-kinase inhibitor reduces endogenous Par-4 levels, suggesting that both Smad and NF-κB pathways are involved in TGF-β-mediated Par-4 upregulation. NF-κB-binding sites in Par-4 promoter have previously been reported; however, using chromatin immunoprecipitation assay we showed that Par-4 promoter region also contains Smad4-binding site. Furthermore, TGF-β promotes nuclear localization of Par-4. Prolonged TGF-β3 treatment disrupts epithelial cell morphology, promotes cell motility and induces upregulation of Snail, vimentin, zinc-finger E-box binding homeobox 1 and N-Cadherin and downregulation of Claudin-1 and E-Cadherin. Forced expression of Par-4, results in the upregulation of vimentin and Snail expression together with increase in cell migration. In contrast, small interfering RNA-mediated silencing of Par-4 expression results in decrease of vimentin and Snail expression and prevents TGF-β-induced EMT. We have also uncovered a role of X-linked inhibitor of apoptosis protein in the regulation of endogenous Par-4 levels through inhibition of caspase-mediated cleavage. In conclusion, our findings suggest that Par-4 is a novel and essential downstream target of TGF-β signaling and acts as an important factor during TGF-β-induced EMT. © 2014 Macmillan Publishers Limited.

Cite

CITATION STYLE

APA

Chaudhry, P., Fabi, F., Singh, M., Parent, S., Leblanc, V., & Asselin, E. (2014). Prostate apoptosis response-4 mediates TGF-β-induced epithelial-to-mesenchymal transition. Cell Death and Disease, 5(2). https://doi.org/10.1038/cddis.2014.7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free