Regulation of P21 during diabetes-associated stress of the endoplasmic reticulum

18Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

Endoplasmic reticulum (ER) stress plays a major role in the pathogenesis of diabetes by inducing β-cell apoptosis in the islets of Langerhans. In this study, we show that the transcription factor CHOP, which is instrumental for the induction of ER-stress-associated apoptosis and the pancreatic dysfunction in diabetes, regulates the expression of P21 (WAF1), a cell cycle regulator with anti-apoptotic activity that promotes cell survival. Deficiency of P21 sensitizes pancreatic β-cells to glucotoxicity, while in mice genetic ablation of P21 accelerates experimental diet-induced diabetes, results indicative of a protective role for P21 in the development of the disease. Conversely, pharmacological stimulation of P21 expression by nutlin-3a, an inhibitor of P53-MDM2 interaction, restores pancreatic function and facilitates glucose homeostasis. These findings indicate that P21 acts as an inhibitor of ER-stress-associated tissue damage and that stimulation of P21 activity can be beneficial for the management of diabetes and probably of other conditions in which ER-stress-associated death is undesirable.

Cite

CITATION STYLE

APA

Mihailidou, C., Chatzistamou, I., Papavassiliou, A. G., & Kiaris, H. (2015). Regulation of P21 during diabetes-associated stress of the endoplasmic reticulum. Endocrine-Related Cancer, 22(2), 217–228. https://doi.org/10.1530/ERC-15-0018

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free