As telomere length (TL) often predicts survival and lifespan, there is considerable interest in the origins of inter-individual variation in TL. Cross-generational effects of parental age on offspring TL are thought to be a key source of variation, but the rarity of longitudinal studies that examine the telomeres of successive offspring born throughout the lives of parents leaves such effects poorly understood. Here, we exploit TL measures of successive offspring produced throughout the long breeding tenures of parents in wild white-browed sparrow weaver (Plocepasser mahali) societies, to isolate the effects of within-parent changes in age on offspring TLs. Our analyses reveal the first evidence to date of a positive within-parent effect of advancing age on offspring TL: as individual parents age, they produce offspring with longer telomeres (a modest effect that persists into offspring adulthood). We consider the potential for pre- and post-natal mechanisms to explain our findings. As telomere attrition predicts offspring survival to adulthood in this species, this positive parental age effect could impact parent and offspring fitness if it arose via differential telomere attrition during offspring development. Our findings support the view that cross-generational effects of parental age can be a source of inter-individual variation in TL.
CITATION STYLE
Brown, A. M., Wood, E. M., Capilla-Lasheras, P., Harrison, X. A., & Young, A. J. (2021). Longitudinal evidence that older parents produce offspring with longer telomeres in a wild social bird. Biology Letters, 17(10). https://doi.org/10.1098/rsbl.2021.0409
Mendeley helps you to discover research relevant for your work.