Non-interacting binary systems containing a magnetic white dwarf and a main-sequence star are considered extremely rare, perhaps non-existent. In the course of a search of magnetic fields in high-mass white dwarfs we have discovered a Sirius-like wide binary system composed of a main-sequence G0 star and an M? ∼? 1.1? M? white dwarf with a huge (hundreds of MG) magnetic field. This star, WDS J03038+0608B, shows a circular polarisation amplitude of 5% in the continuum, with no evidence of variability on a 1 d timescale, little or no linear polarisation in the blue part of the spectrum, and about 2% linear polarisation in the red part of the optical spectrum. A search in the literature reveals the existence of four more binary systems that include a magnetic white dwarf and a non-degenerate companion; three such systems passed unremarked in previous studies. We estimate that up to a few percent of magnetic white dwarfs may be found to occur in wide binary pairs. However, at least four of the five known binary systems with a magnetic white dwarf are too widely separated to be expected to evolve into systems experiencing Roche-lobe overflow, and cannot be considered as progenitors of magnetic cataclysmic variable (AM Her and DQ Her) systems.
CITATION STYLE
Landstreet, J. D., & Bagnulo, S. (2020). Discovery of a Sirius-like binary system with a very strongly magnetic white dwarf: Binarity among magnetic white dwarfs. Astronomy and Astrophysics, 634. https://doi.org/10.1051/0004-6361/201937301
Mendeley helps you to discover research relevant for your work.