Automated Decision Making ResNet Feed-Forward Neural Network based Methodology for Diabetic Retinopathy Detection

3Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

The detection of diabetic retinopathy eye disease is a time-consuming and labor-intensive process, that necessitates an ophthalmologist to investigate, assess digital color fundus photographic images of the retina, and discover DR by the existence of lesions linked with the vascular anomalies triggered by the disease. The integration of a single type of sequential image has fewer variations among them, which does not provide more feasibility and sufficient mapping scenarios. This research proposes an automated decision-making ResNet feed-forward neural network methodology approach. The mapping techniques integrated to analyze and map missing connections of retinal arterioles, microaneurysms, venules and dot points of the fovea, cottonwool spots, the macula, the outer line of optic disc computations, and hard exudates and hemorrhages among color and back white images. Missing computations are included in the sequence of vectors, which helps identify DR stages. A total of 5672 sequential and 7231 non-sequential color fundus and black-and-white retinal images were included in the test cases. The 80 and 20 percentage rations of best and poor-quality images were integrated in testing and training and implicated the 10-ford cross-validation technique. The accuracy, sensitivity, and specificity for testing and analysing good-quality images were 98.9%, 98.7%, and 98.3%, and poor-quality images were 94.9%, 93.6%, and 93.2%, respectively.

Cite

CITATION STYLE

APA

Kumari, A. A., Bhagat, A., Henge, S. K., & Mandal, S. K. (2023). Automated Decision Making ResNet Feed-Forward Neural Network based Methodology for Diabetic Retinopathy Detection. International Journal of Advanced Computer Science and Applications, 14(5), 303–314. https://doi.org/10.14569/IJACSA.2023.0140532

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free