Transport of explosive residue surrogates in saturated porous media

2Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Department of Defense operational ranges may become contaminated by particles of explosives residues (ER) as a result of low-order detonations of munitions. The goal of this study was to determine the extent to which particles of ER could migrate through columns of sandy sediment, representing model aquifer materials. Transport experiments were conducted in saturated columns (2×20 cm) packed with different grain sizes of clean sand or glass beads. Fine particles (approximately 2 to 50 μm) of 2,6-dinitrotoluene (DNT) were used as a surrogate for ER. DNT particles were applied to the top 1 cm of sand or beads in the columns, and the columns were subsequently leached with artificial groundwater solutions. DNT migration occurred as both dissolved and particulate phases. Concentration differences between unfiltered and filtered samples indicate that particulate DNT accounted for up to 41% of the mass recovered in effluent samples. Proportionally, more particulate than dissolved DNT was recovered in effluent solutions from columns with larger grain sizes, while total concentrations of DNT in effluent were inversely related to grain size. Of the total DNT mass applied to the uppermost layer of the column, <3% was recovered in the effluent with the bulk remaining in the top 2 cm of the column. Our results suggest there is some potential for subsurface migration of ER particles and that most of the particles will be retained over relatively short transport distances. © Springer Science+Business Media B.V. 2011.

Cite

CITATION STYLE

APA

Lavoie, B., Mayes, M. A., & McKay, L. D. (2012). Transport of explosive residue surrogates in saturated porous media. Water, Air, and Soil Pollution, 223(5), 1983–1993. https://doi.org/10.1007/s11270-011-0999-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free