Analysis of mitochondrial DNA restriction fragment length polymorphism in European anchovy (Engraulis encrasicolus) revealed a large number of mitotypes that form two distinct clusters (phylads). Phylad A consists of one common mitotype and many rare secondary mitotypes that are one mutational step removed from the main type. Nucleotide diversity and number of homoplasious changes are low. Phylad B has a complex pattern of mitotype connectedness, high nucleotide diversity, and a large number of homoplasious changes. It is suggested that the two phylads evolved in isolation from each other and that present coexistence is the result of a secondary contact. Moreover, phylad A has a 'star' phylogeny, which suggests that it has evolved in a population that experienced a drastic bottleneck followed by an explosion of size. Phylad A is practically the only phylad present in the Black Sea, with its frequency dropping to 85% in the northern Aegean, and to 40% in the rest of Mediterranean and the Bay of Biscay. The Black Sea is, therefore, the most likely place of origin of phylad A. Molecular data are consistent with a population bottleneck in the Black Sea during the last glaciation event and a subsequent exit of phylad A with the outflow into the Aegean following the ice melting. Phylogenetic analysis of anchovy mtDNA provides a reconstruction of population history in the Mediterranean, which is consistent with the geological information.
CITATION STYLE
Magoulas, A., Tsimenides, N., & Zouros, E. (1996). Mitochondrial DNA phylogeny and the reconstruction of the population history of a species: The case of the European anchovy (Engraulis encrasicolus). Molecular Biology and Evolution, 13(1), 178–190. https://doi.org/10.1093/oxfordjournals.molbev.a025554
Mendeley helps you to discover research relevant for your work.