Dft and td-dft investigation of a charge transfer surface resonance raman model of n3 dye bound to a small tio2 nanoparticle

7Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Raman spectroscopy is an important method for studying the configuration of Ru bipyridyl dyes on TiO2 . We studied the [Ru(II)(4,4′-COOH-2,2′-bpy)2(NCS)2)] dye (N3) adsorbed on a (TiO2 )5 nanoparticle using Density Functional Theory, DFT, to optimize the geometry of the complex and to simulate normal Raman scattering, NRS, for the isolated N3 and the N3–(TiO2)5 complex. Two configurations of N3 are found on the surface both anchored with a carboxylate bridging bidentate linkage but one with the two NCS ligands directed away from the surface and one with one NSC tilted away and the other NCS interacting with the surface. Both configurations also had another –COOH group hydrogen bonded to a Ti-O dangling bond. These configurations can be distinguished from each other by Raman bands at 2104 and 2165 cm−1 . The former configuration has more intense Normal Raman Scattering, NRS, on TiO2 surfaces and was studied with Time-Dependent Density Functional Theory, TD-DFT, frequency-dependent Raman simulations. Pre-resonance Raman spectra were simulated for a Metal to Ligand Charge Transfer, MLCT, excited state and for a long-distance CT transition from N3 directly to (TiO2 )5. Enhancement factors for the MLCT and long-distance CT processes are around 1 × 103 and 2 × 102, respectively. A Herzberg–Teller intensity borrowing mechanism is implicated in the latter and provides a possible mechanism for the photo-injection of electrons to titania surfaces.

Cite

CITATION STYLE

APA

Birke, R. L., & Lombardi, J. R. (2021). Dft and td-dft investigation of a charge transfer surface resonance raman model of n3 dye bound to a small tio2 nanoparticle. Nanomaterials, 11(6). https://doi.org/10.3390/nano11061491

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free