CYP101J2, CYP101J3, and CYP101J4, 1,8-cineolehydroxylating cytochrome P450 monooxygenases from Sphingobium yanoikuyae strain B2

8Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We report the isolation and characterization of three new cytochrome P450 monooxygenases: CYP101J2, CYP101J3, and CYP101J4. These P450s were derived from Sphingobium yanoikuyae B2, a strain that was isolated from activated sludge based on its ability to fully mineralize 1,8-cineole. Genome sequencing of this strain in combination with purification of native 1,8- cineole-binding proteins enabled identification of 1,8-cineole-binding P450s. The P450 enzymes were cloned, heterologously expressed (N-terminally His6 tagged) in Escherichia coli BL21(DE3), purified, and spectroscopically characterized. Recombinant whole-cell biotransformation in E. coli demonstrated that all three P450s hydroxylate 1,8-cineole using electron transport partners from E. coli to yield a product putatively identified as (1S)-2α-hydroxy-1,8-cineole or (1R)-6α-hydroxy-1,8-cineole. The new P450s belong to the CYP101 family and share 47% and 44% identity with other 1,8-cineole-hydroxylating members found in Novosphingobium aromaticivorans and Pseudomonas putida. Compared to P450cin (CYP176A1), a 1,8-cineole-hydroxylating P450 from Citrobacter braakii, these enzymes share less than 30% amino acid sequence identity and hydroxylate 1,8-cineole in a different orientation. Expansion of the enzyme toolbox for modification of 1,8-cineole creates a starting point for use of hydroxylated derivatives in a range of industrial applications.

Cite

CITATION STYLE

APA

Unterweger, B., Bulach, D. M., Scoble, J., Midgley, D. J., Greenfield, P., Lyras, D., … Dumsday, G. J. (2016). CYP101J2, CYP101J3, and CYP101J4, 1,8-cineolehydroxylating cytochrome P450 monooxygenases from Sphingobium yanoikuyae strain B2. Applied and Environmental Microbiology, 82(22), 6507–6517. https://doi.org/10.1128/AEM.02067-16

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free