Electrochemistry Study of Bio-Based Composite Biopolymer Electrolyte—Starch/Cardol

3Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

Abstract

The environmental problems generated by pollution due to polymers of petrochemical origin have led to the search for eco-friendly alternatives such as the development of biopolymers or bio-based polymers. The aim of this work was to evaluate the electrochemical behavior of a biopolymer composite made from cassava starch and cardol extracted from cashew nut shell liquid. The biopolymers were prepared using the thermochemical method, varying the synthesis pH and the cardol amounts. The biopolymers were synthesized in the form of films and characterized by cyclic voltamperometry and electrochemical impedance spectroscopy. The biopolymers showed a rich electroactivity, with three oxidation–reduction processes evidenced in the voltamperograms. On the other hand, the equivalent circuit corresponding to the impedance behavior of biopolymers integrated the processes of electron transfer resistance, electric double layer, redox reaction process, and resistance of the biopolymeric matrix. The results allowed us to conclude that the cardol content and the synthesis pH were factors that affect the electrochemical behavior of biopolymer composite films. Electrochemical processes in biopolymers were reversible and involved two-electron transfer and were diffusion-controlled processes.

Cite

CITATION STYLE

APA

Arrieta, A. A., Nuñez de la Rosa, Y., & Palencia, M. (2023). Electrochemistry Study of Bio-Based Composite Biopolymer Electrolyte—Starch/Cardol. Polymers, 15(9). https://doi.org/10.3390/polym15091994

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free