Electrospun mats based on pva/naddbs/cnx nanocomposite for electrochemical sensing

4Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

This study presents a nanocomposite developed with PVA, multiwall carbon nanotubes (CNTs) doped with nitrogen, and NaDDBS, which change the electrical properties of the polymer and its viscosity to be used in electrospinning process for obtaining mats of nano/macro fibers. The proposed nanocomposite was characterized using Fourier transform-infrared and Raman spectroscopy techniques, confirming the presence of the CNxs immersed in the polymer. High-resolution transmission electron microscopy was used to obtain the micrographs that showed the characteristic interplanar distances of the multiwall CNT in the polymeric matrix, with values of 3.63 Å. Finally, the CNx mats were exposed to various aqueous solutions in a potentiostat to demonstrate the effec-tiveness of the nanofibers for electrochemical analysis. The CNx-induced changes in the electrical properties of the polymer were identified using cyclic voltammograms, while the electrochemical analysis revealed supercapacitor behavior.

Cite

CITATION STYLE

APA

Vilchis-León, P., Hérnandez-Varela, J., Chanona-Pérez, J. J., Urby, R. B., & Guerrero, R. E. (2021). Electrospun mats based on pva/naddbs/cnx nanocomposite for electrochemical sensing. Materials, 14(21). https://doi.org/10.3390/ma14216664

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free