While the number of devices connected together as the Internet of Things (IoT) is growing, the demand for an efficient and secure model of resource discovery in IoT is increasing. An efficient resource discovery model distributes the registration and discovery workload among many nodes and allow the resources to be discovered based on their attributes. In most cases this discovery ability should be restricted to a number of clients based on their attributes, otherwise, any client in the system can discover any registered resource. In a binary discovery policy, any client with the shared secret key can discover and decrypt the address data of a registered resource regardless of the attributes of the client. In this paper we propose Attred, a decentralized resource discovery model using the Region-based Distributed Hash Table (RDHT) that allows secure and location-aware discovery of the resources in IoT network. Using Attribute Based Encryption (ABE) and based on predefined discovery policies by the resources, Attred allows clients only by their inherent attributes, to discover the resources in the network. Attred distributes the workload of key generations and resource registration and reduces the risk of central authority management. In addition, some of the heavy computations in our proposed model can be securely distributed using secret sharing that allows a more efficient resource registration, without affecting the required security properties. The performance analysis results showed that the distributed computation can significantly reduce the computation cost while maintaining the functionality. The performance and security analysis results also showed that our model can efficiently provide the required security properties of discovery correctness, soundness, resource privacy and client privacy.
CITATION STYLE
Kamel, M. B. M., Yan, Y., Ligeti, P., & Reich, C. (2021). Attred: Attribute based resource discovery for IoT. Sensors, 21(14). https://doi.org/10.3390/s21144721
Mendeley helps you to discover research relevant for your work.