TAPBPR alters MHC class I peptide presentation by functioning as a peptide exchange catalyst

  • Hermann C
  • van Hateren A
  • Trautwein N
  • et al.
N/ACitations
Citations of this article
41Readers
Mendeley users who have this article in their library.

Abstract

Our understanding of the antigen presentation pathway has recently been enhanced with the identification that the tapasin-related protein TAPBPR is a second major histocompatibility complex (MHC) class I-specific chaperone. We sought to determine whether, like tapasin, TAPBPR can also influence MHC class I peptide selection by functioning as a peptide exchange catalyst. We show that TAPBPR can catalyse the dissociation of peptides from peptide-MHC I complexes, enhance the loading of peptide-receptive MHC I molecules, and discriminate between peptides based on affinity in vitro. In cells, the depletion of TAPBPR increased the diversity of peptides presented on MHC I molecules, suggesting that TAPBPR is involved in restricting peptide presentation. Our results suggest TAPBPR binds to MHC I in a peptide-receptive state and, like tapasin, works to enhance peptide optimisation. It is now clear there are two MHC class I specific peptide editors, tapasin and TAPBPR, intimately involved in controlling peptide presentation to the immune system.Our immune system protects us from infections and destroys cells that are turning cancerous. A group of proteins called MHC class I molecules are essential for this protection. These molecules let the immune system know what is going on inside our cells by displaying chopped up fragments of proteins (or peptides) on the surface of the cell. If these peptides are from infectious or disease-causing agents the immune system is triggered into action and can recognise and kill the cell.There is still much to discover regarding how MHC molecules choose which peptides to display. A very complex pathway within our cells controls this displaying of peptides to the immune system. Recently, a protein called TAPBPR was identified as a new player in MHC class I biology, but its role was unclear.Hermann, van Hateren et al. now reveal that TAPBPR plays a central role in restricting which peptides are loaded onto and presented by MHC class I molecules. The results suggest that TAPBPR acts as a quality control checkpoint, closely monitoring and ensuring that the loaded peptide is stable within the MHC class I molecule. The discovery of TAPBPR's role in peptide selection increases our understanding of how peptides are chosen and stabilized, and sets the stage for learning more about how cells decide which peptides to reveal to the immune system.

Cite

CITATION STYLE

APA

Hermann, C., van Hateren, A., Trautwein, N., Neerincx, A., Duriez, P. J., Stevanović, S., … Boyle, L. H. (2015). TAPBPR alters MHC class I peptide presentation by functioning as a peptide exchange catalyst. ELife, 4. https://doi.org/10.7554/elife.09617

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free