Ranibizumab is a biotherapeutic Fab fragment used for the treatment of age-related macular degeneration and macular oedema. It is currently expressed in the gram-negative bacterium, Escherichia coli. However, low expression levels result in a high manufacturing cost. The protein expression can be increased by manipulating nutritional requirements (carbon source, nitrogen source, buffering agent), process parameters (pH, inducer concentration, agitation, temperature), and the genetic make-up of the producing strain. Further, understanding the impact of these factors on product quality is a requirement as per the principles of Quality by Design (QbD). In this paper, we examine the effect of various media components and process parameters on the expression level and quality of the biotherapeutic. First, risk analysis was performed to shortlist different media components based on the literature. Next, experiments were performed to screen these components. Eight components were identified for further investigation and were examined for their effect and interactions using a Fractional Factorial experimental design. Sucrose, biotin, and pantothenate were found to have the maximum effect during Fab production. Furthermore, cyanocobalamin glutathione and biotin-glutathione were the most significant interactions observed. Product identification was performed with Liquid Chromatography-Mass Spectrometry (LC-MS), the expression level was quantified using Bio-layer Interferometry, Reverse Phase-HPLC, and SDS-PAGE, and product quality were measured by RP-HPLC. Overall, a five-fold enhancement of the target protein titer was obtained (from 5 mg/L to 25 mg/L) using the screened medium components vis-a-vis the basal medium, thereby demonstrating the efficacy of the systematic approach purported by QbD.
CITATION STYLE
Kumar, D., Batra, J., Komives, C., & Rathore, A. S. (2019). QbD based media development for the production of fab fragments in E. Coli. Bioengineering, 6(2). https://doi.org/10.3390/bioengineering6020029
Mendeley helps you to discover research relevant for your work.