Direct growth of large-area graphene and boron nitride heterostructures by a co-segregation method

204Citations
Citations of this article
239Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Graphene/hexagonal boron nitride (h-BN) vertical heterostructures have recently revealed unusual physical properties and new phenomena, such as commensurate-incommensurate transition and fractional quantum hall states featured with Hofstadtera € s butterfly. Graphene-based devices on h-BN substrate also exhibit high performance owing to the atomically flat surface of h-BN and its lack of charged impurities. To have a clean interface between the graphene and h-BN for better device performance, direct growth of large-area graphene/h-BN heterostructures is of great importance. Here we report the direct growth of large-area graphene/h-BN vertical heterostructures by a co-segregation method. By one-step annealing sandwiched growth substrates (Ni(C)/(B, N)-source/Ni) in vacuum, wafer-scale graphene/h-BN films can be directly formed on the metal surface. The as-grown vertically stacked graphene/h-BN structures are demonstrated by various morphology and spectroscopic characterizations. This co-segregation approach opens up a new pathway for large-batch production of graphene/h-BN heterostructures and would also be extended to the synthesis of other van der Waals heterostructures.

Cite

CITATION STYLE

APA

Zhang, C., Zhao, S., Jin, C., Koh, A. L., Zhou, Y., Xu, W., … Liu, Z. (2015). Direct growth of large-area graphene and boron nitride heterostructures by a co-segregation method. Nature Communications, 6. https://doi.org/10.1038/ncomms7519

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free