Theoretical investigations on microwave Fano resonances in 3D-printable hollow dielectric resonators

17Citations
Citations of this article
34Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

High-index dielectric structures have recently been studied intensively for Mie resonances at optical frequencies. These dielectric structures can enable extreme light manipulation, similar to that which has been achieved with plasmonic nanostructures. In the microwave region, dielectric resonators and metamaterials can be fabricated directly using 3D printing, which is advantageous for fabricating structurally complicated 3D geometries. It is therefore especially suitable for the fabrication of subwavelength structures. Here we report theoretical investigations on microwave Fano resonances in 3D-printable dielectric materials and structures. In particular, we propose and analyse 3D-printable, hollow, dielectric resonators with relatively low refractive indices, which exhibit sharp Fano resonances. We can control the interaction between bright and dark modes in a coupled dielectric particle pair by adjusting the inner-hole size, and thus we can increase the radiative Q factors further. We also find that Fano resonances in these hollow dielectric resonators are very sensitive to an index change in the surrounding medium, which could be useful for long-distance environmental sensing. New possibilities and opportunities are opening up with the rapid development of 3D-printing technologies. Our findings and the detailed investigations reported here can provide useful guidelines for future photonic devices based on 3D-printable materials and structures.

Cite

CITATION STYLE

APA

Lee, E., Seo, I. C., Jeong, H. Y., An, S. C., & Jun, Y. C. (2017). Theoretical investigations on microwave Fano resonances in 3D-printable hollow dielectric resonators. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-16501-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free