El monitoreo acústico permite evaluar cambios espacio-temporales en poblaciones animales. Sin embargo, analizar grandes volúmenes de información es desafiante. Se evaluó el desempeño de una técnica de detección (función autodetec del paquete warbleR de R) para identificar vocalizaciones de Megascops centralis, utilizando 6877 grabaciones de un minuto provenientes de grabadoras ubicadas en 21 sitios alrededor del embalse Jaguas, Andes de Antioquia, Colombia. Las vocalizaciones se anotaron manualmente y se seleccionaron dos sitios (597 grabaciones) con el mayor número de registros (49 y 34) para la evaluación del algoritmo. La función fue utilizada con audios a dos tasas de muestreo (44 100 Hz y 22 050 Hz) y tres umbrales de amplitud (5, 10 y 20). Se evaluó el desempeño de la función en términos de su sensibilidad y especificidad, y se estimó la probabilidad de detección de una vocalización según su calidad. La sensibilidad y especificidad presentaron gran variación (0-0.48 y 0.5-0.98 respectivamente). La probabilidad de detección de una señal aumentó con su calidad (mala: 0.12, media: 0.27 y buena: 0.64). El monitoreo acústico tiene gran potencial, y parte de su éxito depende de herramientas de reconocimiento automático, de acceso abierto y fácil implementación. Este desarrollo puede acelerarse fortaleciendo nuestras colecciones sonoras.
CITATION STYLE
Hoyos Cardona, L. A., Ulloa, J., & Parra Vergara, J. L. (2021). Detección automatizada de cantos de aves continúa siendo un desafío: el caso de warbleR y Megascops centralis (búho del Chocó). Biota Colombiana, 22(1). https://doi.org/10.21068/c2021.v22n01a10
Mendeley helps you to discover research relevant for your work.