Computation and functional studies provide a model for the structure of the zinc transporter hZIP4

61Citations
Citations of this article
72Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Members of the Zrt and Irt protein (ZIP) family are a central participant in transition metal homeostasis as they function to increase the cytosolic concentration of zinc and/or iron. However, the lack of a crystal structure hinders elucidation of the molecular mechanism of ZIP proteins. Here, we employed GREMLIN, a co-evolution-based contact prediction approach in conjunction with the Rosetta structure prediction program to construct a structural model of the human (h) ZIP4 transporter. The predicted contact data are best fit by modeling hZIP4 as a dimer. Mutagenesis of residues that comprise a central putative hZIP4 transmembrane transition metal coordination site in the structural model alter the kinetics and specificity of hZIP4. Comparison of the hZIP4 dimer model to all known membrane protein structures identifies the 12-transmembrane monomeric Piriformospora indica phosphate transporter (PiPT), a member of the major facilitator superfamily (MFS), as a likely structural homolog.

Cite

CITATION STYLE

APA

Antala, S., Ovchinnikov, S., Kamisetty, H., Baker, D., & Dempski, R. E. (2015). Computation and functional studies provide a model for the structure of the zinc transporter hZIP4. Journal of Biological Chemistry, 290(29), 17796–17805. https://doi.org/10.1074/jbc.M114.617613

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free