Semliki Forest virus capsid (C) protein molecules (Mr, 33,000) can be introduced efficiently into the cytoplasm of various target cells by electroporation, liposome, and erythrocyte ghost-mediated delivery (M. Elgizoli, Y. Dai, C. Kempf, H. Koblet, and M.R. Michel, J. Virol. 63:2921-2928, 1989). Here, we show that the transferred C protein molecules partition rapidly from the cytosolic compartment into the nucleus. Transport of the C protein molecules into the nucleus was reversibly arrested by metabolic inhibitors, indicating that the transfer process is energy dependent. Fractionation of isolated nuclei revealed that the delivered C protein preferentially associates with the nucleoli. This finding was confirmed by morphological studies, showing that in an in vitro system containing ATP isolated nuclei rapidly accumulated rhodamine-labeled C protein in their nucleoli. Furthermore, in this assay system, the lectin wheat germ agglutinin prevented transfer of C protein through nuclear pores. These results are in agreement with our observation that nucleoli contain measurable amounts of newly synthesized C protein as early as 5 h after infection of cells with SFV. Thereafter, nucleolar-associated C protein increased progressively during the course of infection.
CITATION STYLE
Michel, M. R., Elgizoli, M., Dai, Y., Jakob, R., Koblet, H., & Arrigo, A. P. (1990). Karyophilic properties of Semliki Forest virus nucleocapsid protein. Journal of Virology, 64(10), 5123–5131. https://doi.org/10.1128/jvi.64.10.5123-5131.1990
Mendeley helps you to discover research relevant for your work.