Elaiophylin Inhibits Tumorigenesis of Human Lung Adenocarcinoma by Inhibiting Mitophagy via Suppression of SIRT1/Nrf2 Signaling

7Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

Lung adenocarcinoma (LADC), the most common type of lung cancer, is still one of the most aggressive and rapidly fatal tumor types, even though achievements in new therapeutic approaches have been developed. Elaiophylin as a C2 symmetrically glycosylated 16 macrolides has been reported to be a late-stage autophagy inhibitor with a potent anti-tumor effect on various cancers. This study investigated the anti-tumor effect of elaiophylin on human LADC for the first time in in vitro and in vivo models. The in vitro study in LADC A549 cells showed that elaiophylin significantly inhibited cell viability and induced cell apoptosis through the suppression of mitophagy and induction of cellular and mitochondrial oxidative stress. Proteomic analysis and molecular docking assay implicated that SIRT1 was likely the direct target of elaiophylin in A549 cells. Further mechanistic study verified that elaiophylin reduced Nrf2 deacetylation, expression, and transcriptional activity as well as cytoplasm translocation by downregulating SIRT1 expression and deacetylase activity. Additionally, SIRT1/Nrf2 activation could attenuate elaiophylin-induced mitophagy inhibition and oxidative stress. The in vivo study in the A549-xenograft mice model showed that the anti-tumor effect of elaiophylin was accompanied by the decreased expressions of SIRT1, Nrf2, Parkin, and PINK1. Thus, the present study reports that elaiophylin has potent anti-tumor properties in LADC, which effect is likely mediated through suppressing the SIRT1/Nrf2 signaling. In conclusion, elaiophylin may be a novel drug candidate for LADC and SIRT1 may be a new therapeutic target for such devastating malignancy.

Cite

CITATION STYLE

APA

Ji, J., Wang, K., Meng, X., Zhong, H., Li, X., Zhao, H., … Zhu, X. (2022). Elaiophylin Inhibits Tumorigenesis of Human Lung Adenocarcinoma by Inhibiting Mitophagy via Suppression of SIRT1/Nrf2 Signaling. Cancers, 14(23). https://doi.org/10.3390/cancers14235812

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free