Imbalance in the cellular redox system is thought to be associated with the induction and progression of breast cancers, and heme proteins may regulate the redox balance. Cytochrome b5 (Cyt b5) is a small mitochondrial heme protein. Its function and regulating mechanism in breast cancer remain unknown. In this study, we elucidated the level of endogenous oxidative stress in breast cancer cells, MCF-7 cells (hormone receptor-positive cells) and MDA-MB-231 cells (triple-negative cells), and investigated the difference in Cyt b5 content. Based on the low content of Cyt b5 in MDA-MB-231 cells, the overexpression of Cyt b5 was found to regulate the oxidative stress and apoptosis cascades, including ERK1/2 and Akt signaling pathways. The overexpressed Cyt b5 MDA-MB-231 cells were shown to exhibit decreased oxidative stress, less phosphorylation of ERK1/2 and Akt, and less cleavage of caspases 3 and 9 upon treatment with H2O2, as compared to those of normal MDA-MB-231 cells. Moreover, the overexpressed Cyt b5 most likely functioned by interacting with its protein partner, Cyt c, as suggested by co-immunoprecipitation studies. These results indicated that Cyt b5 has different effects on breast cancer cells of different phenotypes, which provides useful information for understanding the multiple roles of Cyt b5 and provides clues for clinical treatment.
CITATION STYLE
Tong, X. Y., Yang, X. Z., Gao, S. Q., Wang, X. J., Wen, G. B., & Lin, Y. W. (2022). Regulating Effect of Cytochrome b5 Overexpression on Human Breast Cancer Cells. Molecules, 27(14). https://doi.org/10.3390/molecules27144556
Mendeley helps you to discover research relevant for your work.