Data-driven prediction method for power grid state subjected to heavy-rain hazards

6Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

This study presents a machine learning-based method for predicting the power grid state subjected to heavy-rain hazards. Machine learning models can recognize key knowledge from a dataset without any preliminary knowledge about the dataset. Hence, machine learning methods have been utilized for solving power grid-related problems. Two sets of historical data were used herein: Local weather data and power grid outage data. First, we investigated the heavy-rain-related outage distribution and analyzed the correlated characteristics between weather and outages to characterize the heavy rain events. The analysis results show that multiple weather effects are significant in causing power outages, even under heavy-rain conditions. Furthermore, this study proposes a cost-sensitive prediction method using a support vector machine (SVM) model. The accuracy of the model was improved by applying a cost-sensitive learning algorithm to the SVM model, which was subsequently used to predict the state of the grid. The developed model was evaluated using G-mean values. The proposed method was verified via actual data of a heavy rain event that occurred in South Korea.

Cite

CITATION STYLE

APA

Oh, S., Kong, J., Choi, M., & Jung, J. (2020). Data-driven prediction method for power grid state subjected to heavy-rain hazards. Applied Sciences (Switzerland), 10(14). https://doi.org/10.3390/app10144693

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free