Clustering of attribute and/or relational data

  • Ferligoj A
  • Kronegger L
N/ACitations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

A large class of clustering problems can be formulated as an optimizational problem in which the best clustering is searched for among all feasible clustering according to a selected criterion function. This clustering approach can be applied to a variety of very interesting clustering problems, as it is possible to adapt it to a concrete clustering problem by an appropriate specification of the criterion function and/or by the definition of the set of feasible clusterings. Both, the blockmodeling problem (clustering of the relational data) and the clustering with relational constraint problem (clustering of the attribute and relational data) can be very successfully treated by this approach. It also opens many new developments in these areas. The paired clustering approaches are applied to the Slovenian scientific collaboration data.

Cite

CITATION STYLE

APA

Ferligoj, A., & Kronegger, L. (2009). Clustering of attribute and/or relational data. Advances in Methodology and Statistics, 6(2). https://doi.org/10.51936/gvzj6999

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free