Golgi fucosyltransferase 1 reveals its important role in α-1,4-fucose modification of N-glycan in CRISPR/Cas9 diatom Phaeodactylum tricornutum

3Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Phaeodactylum tricornutum (Pt) is a critical microbial cell factory to produce a wide spectrum of marketable products including recombinant biopharmaceutical N-glycoproteins. N-glycosylation modification of proteins is important for their activity, stability, and half-life, especially some special modifications, such as fucose-modification by fucosyltransferase (FucT). Three PtFucTs were annotated in the genome of P. tricornutum, PtFucT1 was located on the medial/trans-Golgi apparatus and PtFucT2-3 in the plastid stroma. Algal growth, biomass and photosynthesis efficiency were significantly inhibited in a knockout mutant of PtFucT1 (PtFucT1-KO). PtFucT1 played a role in non-core fucose modification of N-glycans. The knockout of PtFucT1 might affect the activity of PtGnTI in the complex and change the complex N-glycan to mannose type N-glycan. The study provided critical information for understanding the mechanism of protein N-glycosylation modification and using microalgae as an alternative ecofriendly cell factory to produce biopharmaceuticals.

Cite

CITATION STYLE

APA

Xie, X., Yang, J., Du, H., Chen, J., Sanganyado, E., Gong, Y., … Liu, X. (2023). Golgi fucosyltransferase 1 reveals its important role in α-1,4-fucose modification of N-glycan in CRISPR/Cas9 diatom Phaeodactylum tricornutum. Microbial Cell Factories, 22(1). https://doi.org/10.1186/s12934-022-02000-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free