Diesel engines are more efficient than forced ignition engines but due to diffused combustion and work with high air residue levels, burning products contain soot and NOx, pollutants that work Handling it on the road today still has many technical problems. The technology of organizing the combustion of diesel engines directly affects the level of pollution generated. Direct injection diesel engines have a lower fuel consumption than a combustion engine with a separation of about 10% and a lower level of soot emissions when the engine is operating in local loading mode. However, direct injection engines work noisier and generate more pollutants (NOx, HC). Today, this type of combustion chamber is only used for heavy-duty truck engines. Limiting the optimal emission level for diesel engines needs to balance the concentration of the two main pollutants, NOx and soot. Low temperature combustion (LTC) engines need different enabling technologies depending on the fuel and strategy used to achieve combustion of the premixed fuel–air mixture. Controlling the combustion rate is one of the major challenges in LTC engines, particularly in PPCI combustion engine to achieve higher thermal efficiency, the desired phasing of combustion timings is essential even at moderate combustion rates. Present chapter describes the combustion control variables and control strategies used for LTC engines. Various methods demonstrated to control the LTC engines can be categorized in to two main strategies: (i) altering pressure–temperature and (ii) altering fuel reactivity of the charge.
CITATION STYLE
Nam, C. D., & Le, V. V. (2018). The Strategies of NOx Emission Reduction for Diesel Engines. European Journal of Engineering Research and Science, 3(11), 32–36. https://doi.org/10.24018/ejers.2018.3.11.969
Mendeley helps you to discover research relevant for your work.